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Abstract— In robotics, many control and planning schemes
have been developed that ensure the human physical safety in
human-robot interaction. The human psychological state and
expectation towards the robot, however, are typically neglected.
Even if the robot behaviour is regarded as biomechanically safe,
humans may still react with rapid involuntary motion (IM)
caused by startle or surprise. Obviously, such sudden, uncon-
trolled motions can jeopardize safety and should be prevented
by any means. In this paper, we propose the Expectable Motion
Unit (EMU) concept which ensures that a certain probability of
IM occurrence is not exceeded in a typical HRI setting. Based
on a model of IM occurrence that we generate through an
experiment with 29 participants, the mapping between robot
velocity, robot-human distance, and the relative frequency of IM
occurrence is established. This mapping is processed towards
a real-time capable robot motion generator, which limits the
robot velocity during task execution if necessary. The EMU is
combined with the well-established Safe Motion Unit in order
to integrate both physical and psychological safety knowledge
and data into a holistic safety framework. In a validation
experiment, it was shown that the EMU successfully avoids
human IM in five out of six cases.

I. INTRODUCTION

Safety is a key requirement for the successful implementa-
tion of modern collaborative robots in real-world industrial
and service scenarios. As proximity is an essential part of
smooth human-robot interaction, collisions and contact (de-
sired, undesired, or even unforeseen) may occur. In robotics,
many pre- and post-collision strategies have been introduced
to ensure the human physical integrity, e.g., collision detection
and reaction [1], collision avoidance [2], [3], and real time
model-, metrics-, or injury data-based control [4], [5]. Besides
ensuring the human’s physical integrity, safe and efficient
human-robot interaction (HRI) also requires understanding
and estimation of the human state, behaviour, and responses,
e.g., human pose estimation [6], [7], [8] or affection towards
robots [9]. An important factor that should be considered
in HRI is the human expectation [10]. If the expectation is
violated, then the human can react with startle and surprise
[11]. This includes rapid involuntary human motions (IM),
which may jeopardize safety [12].

To avoid possibly hazardous contacts even in case of IM,
several authors assume the worst case human motion range
and dynamics in their control and planning schemes [3], [2].
Such schemes can become overly conservative and may lead
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Fig. 1. Framework for safe human-aware motion generation combining the
cognitive-grounded safety criterion involuntary motion occurrence and the
well-established physical safety criterion injury occurrence. Experimentally
established models for human injury and the human expectation towards
robot motion are applied to generate safe robot motion such that it converges
to the human expectation reducing involuntary motion occurrence.

to large separation distances between human and robot, even
if the probability of IM is low. Safer, closer, and more time-
efficient HRI can be achieved if human IM occurrence (IMO)
is reduced or excluded.

In this paper, we develop a systematic approach to improve
the performance and safety in HRI by avoiding human IM.
First, we investigate the influence of robot motion parameters
on the probability of human IMO in a common use case via
an exploratory study involving 29 participants. The collected
data and knowledge are then processed towards a human-
aware, real-time capable motion generator that limits the robot
speed so that a certain IMO probability is not exceeded. This
safety tool is called the Expectable Motion Unit (EMU). It can
seamlessly be combined with state-of-the-art safety schemes
for avoiding human injury or pain during collisions, such as
the Safe Motion Unit (SMU) which was proposed in [13];
see Fig. 1. A preliminary validation experiment involving
eleven participants finally shows that the proposed framework
successfully avoids for IM in the considered use case. Overall,
the EMU concept aims at improving human safety, human-
robot team performance, and robot user trust enabling safe
and trustworthy HRI.

The remainder of the paper is organized as follows. In Sec.
II we give a brief overview of the related work. In Sec. III we
introduce our general approach for EMU aiming at preventing
IMO. We conduct an exploratory experiment and evaluation
method to derive the risk of IMO and represent it in a risk
matrix in Sec. IV. A description of the implementation of
the EMU velocity scaling is presented in Sec. V followed by
an validation experiment. Sec. VI discusses the results and
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Fig. 2. EMU approach from the unknown human expectation to safe velocities based on human physical safety requirements and the reduction of IMO by
experimental observation and modelling as risk matrix and expectation curve.

future direction of research. Finally, Sec. VII concludes the
paper.

II. RELATED WORK

In this section, we briefly summarise the considered
physical safety approach and work on the human perception
of safety in close HRI, in particular the influence of robot
velocity and human-robot distance.

A central goal in HRI is to ensure that no injury occurs in
any collision scenario between robot and human [14]. In this
paper, we consider the Safe Motion Unit (SMU) proposed
in [13] for safe robot velocity scaling to avoid human injury
in HRI. The robot effective mass at the contact location
in the Cartesian unit direction of motion, in other words,
the perceived mass during contact [15], and robot velocity
are mapped to the human injury at a collision. The human
injury data is associated to certain human body parts, injury
levels, and impact surface geometry at the contact location.
Then, safe velocities are defined for a collision scenario via
a so-called safety curve.

Embedding psychological aspects, e.g., human comfort to
robot motion control is suspect to various research [16], [17],
[18]. Instead of increasing comfort, we want to examine
the circumstances in which - roughly speaking - people
experience discomfort, and therefore respond with IM. Thus,
we focus on the basic concepts for understanding potential
influencing factors to IMO. IM as well as other cognitive
impairments results from startle reflexes and surprise reactions
which are potentiated by fear [12]. Literature on how startle
and surprise can be identified and how they relate to each
other is diverse and requires context dependent analysis.
According to [19], both startle and surprise lie on a continuum
where startle is a strong surprise reaction. Thus, both types of
responses can negatively impact safety in HRI environments
and can be observed through multimodal social signal coding.
Social cues, which follow unexpected robot movements
are, e.g., felt smiles [20] or body freezes [21]. The human
expectation which shapes the reaction towards a robot motion
in a certain event is influenced by the human perception of
the scenario [11].

Research in HRI especially considers the perception of
human safety [22] and influencing factors. One parameter
influencing the perception of safety in HRI is the instan-
taneous human-robot distance which can be explained by
proxemic behaviour models [23]. The model of proxemics

TABLE I
ROBOT ACCEPTANCE SOCIAL ZONES REGARDING “PROXEMICS”

Personal space zone Range Supporting studies

Close intimate 0.00 m - 0.15 m [25]
Intimate 0.15 m - 0.45 m [25], [26]
Personal 0.45 m - 1.20 m [25], [26], [27]
Social 1.20 m - 3.60 m
Public ≥ 3.60 m

is introduced in [24] and describes different social zones in
which humans like to interact with each other. It is used in
studies on mobile robots, based on the assumption that robots
are treated as social instances [25], [26], [27]. Unexpectedly,
in studies with the mechanical looking PeopleBot, it was
found that 40 % of the participants were comfortable with
the robot in proximity of less than 0.45 m where usually only
intimate human relationships are accepted. This suggests
that not everyone regards the robot as a social instance and
even closer human-robot proximity is still acceptable[25].
Tab. I lists which human-robot distances were accepted by
the participants of [25], [26], [27] in relation to the well-
established proxemics model. In addition to the distance
between human and robot, several studies conclude that
robot velocity is a factor that strongly correlates with the
feeling of arousal [28], perceived level of hazard [29], and
perceived safety [30]. Other studies also investigated robot
approaching motion parameters including varying motion
direction, acceleration, and jerk in the context of human-
robot handover scenarios [31].

Based on the presented findings of related research we
propose our concept for involuntary motion avoidance in the
following.

III. EXPECTABLE MOTION UNIT CONCEPT

In this work, we propose a cognitive-grounded safety
concept based on the human expectation fulfillment the so-
called Expectable Motion Unit approach. The EMU aims
to ensure a robot performs motions which are expected by
the human and thus avoids human involuntary motions in
HRI by velocity scaling based on a model of human IMO;
see Fig. 1. The EMU approach improves safety as well as
performance and can be combined with control schemes that
aim at preventing human injury. The derivation of the concept
is described in the following; see Fig. 2. We assume that the
human has a certain task-dependent expectation towards the

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after
which this version may no longer be accessible.

2



robot’s behaviour when both are working in close proximity.
For example, the human may expect that the robot moves
slowly inside the human’s workspace. Our goal is to ensure
that the human expectation is fulfilled, which then leads
to controlled, intended human behavior instead of possibly
hazardous startle and surprise reactions.

The first step in the derivation of the EMU concept
is to understand under which circumstances IM occur in
HRI. For this, we conduct an experiment where the human
reaction is analysed in a common HRI scenario, where the
robot approaches the human workspace with variable motion
parameters, e.g., speed, acceleration, or direction. The human
reaction is recorded and classified via social cue analysis.
From the experiments, we derive the relative frequency of
IMO depending on the robot velocity and distance between
human and robot, which are two relevant parameters that
influence IMO (cf. IV-A). We call this mapping a risk matrix
for IMO; see 2 c). For a certain scenario and human condition,
we can then define a threshold in terms of IMO probability
that shall not be exceeded. In the risk matrix, this threshold
can be represented by a so-called expectation curve, which
relates the current human-robot distance to an expected
velocity; see Fig. 2 d). The expectation curve is integrated into
the robot motion generation as EMU, which limits the robot
speed to a value which is considered expectable by the human
if necessary. Finally, the EMU is combined with the Safe
Motion Unit (SMU), that provides a safe velocity, which is
based on injury data from biomechanics collision experiments.
The combination of the two control laws improves safety and
trustworthiness of an autonomous system by ensuring that
both the human expectation towards its motion is fulfilled
and injury is avoided.

In the following, the experimental derivation of a risk
matrix and expectation curve is described. Sec. V then
considers the implementation and validation of the EMU
concept.

IV. EXPERIMENTAL OBSERVATION OF IMO

This section first addresses the prerequisites required for
the demonstration of the EMU concept in this paper. Then, the
experimental design and procedure as well as the evaluation
method for IM are explained.

A. Prerequisites

As human expectation is a multi-dimensional problem
shaped by various human and environmental factors, a large
set of variables influencing IMO exists, which may be
considered. For example, the human expectation towards
a robot motion depends on the person’s situational awareness
about an upcoming robot motion, the mental occupancy of
the human, and the person’s attitude towards technology. Also
the robot motion parameters, which may influence the human
IMO are numerous, e.g., acceleration, direction and distance
of the approach, jerk, and robot velocity.

For the exploratory design of a risk matrix for IMO in
this paper, we make the following assumptions. Firstly, to
observe the dynamics of IMO in HRI, we can make use of

TABLE II
EXPLORATORY EXPERIMENT DESIGN TOWARDS A RISK MATRIX FOR IMO

Objective

Generate data for
expectation curves using

maximum reachable
velocities

Approach
distance to
tablet’s edge
(see Fig. 3 a):

∆dh1 = 0.00 m to ∆dh6 = 0.25 m
Steps: ∆dh = 0.05 m

Order: randomized

Approach
velocity

Set 1:
0.25 m/s

Set 2:
0.55 - 1 m/s
Steps: 0.05 m/s
Order: lower
vr with
higher dh

Observed
parameter S-S cues

Participants

number: 29
age: 34.3 (±15.9),
male: 21 (72.4%),
female: 8 (27.6%)

the correlation between expectation and perception shown in
[11]. This correlation suggests that the parameters influencing
perceived safety affect the IMO as well. Inter-subject distance
is a well known factor to human safety perception [24],
[26] as well as robot speed [22], [28]. Therefore, the the
instantaneous robot-human distance dh and the absolute robot
speed vr are chosen in this paper to establish a risk matrix for
IMO. Additionally, we consider frontal approaching motion
to the human arms and chest. Secondly, we consider the
example of collaborative assembly tasks, where the human
focuses on her/his task and is aware that the robot approaches
to varying distances, but does not await the robot approach
at that moment for a specific purpose. The human task may
require variable mental occupancy that is measured by fixation
time. Lastly, to obtain a general understanding of IMO and to
validate our approach, we aim for a widely spread spectrum
of participants resembling the human factors age, occupancy,
and technology affinity.

Following, we conduct an exploratory experiment1 which
models the defined human and environmental condition. By
applying a social signal coding scheme, we observe IMO for
different vr and dh. Resulting, we generate a risk matrix for
IMO and expectation curve and embed it to the robot motion
generation.

B. Experimental procedure and design

The experimental setup introduced in [32] is used. The
set-up is depicted in Fig. 3, consisting of a robot manipulator
that is mounted on a table, a PC, a camera, which captures the
human upper body and face, a tablet placed on a mounting
at 0.44 m distance from the robot base in y-direction and a
standing-chair, which ensures that all participants’ heads are
positioned at approximately the same height in relation to
the robot start configuration; see Fig. 3a).

1The following experiment was conducted under approval of review
number 395/19 S of the Ethics Commission of Technical University of
Munich (TUM).
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Fig. 3. Experimental procedure: (a) The participant focuses on a quiz while the robot is moving at some distance. (b) The robot approaches towards
distance dh. (c) Mimics and gestures are captured by the camera.

To consider scenarios with few expected IMO a first set of
the experiment is defined using 0.25 m/s as safe velocity
applied as general safety limit for teach-in functions of
collaborative robots. For a second set the maximum velocities
achieved for the corresponding travelling distances are chosen.
Table II summarizes the study design. The human-robot
distance is defined such that IM may occur, starting with the
maximum distance dh6 = 0.25 m which is still perceived as
comfortable from more than 25 % of participants in [25] and
decreasing to dh1 = 0 m in steps of ∆dh = 0.05 m.

The experiment consists of three parts. In the first part,
the participant is seated in front of the tablet, and asked to
complete a quiz about safe handling of the robot arm on the
tablet to obtain mental occupation similar to assembly tasks.
The quiz consists of

1. a short fixation time to analyze a problem (focused
reading measured among three volunteers: 8.21±4.38 s)
followed by

2. a consideration time (e.g. for observation of the envi-
ronment) and

3. a hand-eye coordination task (tapping on the correct
answers).

The participants are told that the robot is moving while they
are solving the quiz. The robot is started and the manipulator
moves within a randomized number of squares in the x/y-
plane at a distance of dh = 0.44 m to the tablet. Then, the
end-effector approaches the human workspace and stops at
one of six distances ranging from dh = 0.25− 0.00 m in
front of the tablet in a randomized order; see Fig. 3 b). The
participant’s reaction is recorded by the camera mounted at
the robot base. Fig. 3 c) shows the perspective of this camera.
During the approach the robot performs a linear movement
at an with v = 0.25 m/s in the first set and v = 0.55−
1 m/s in the second set as described in Table II. During the
approach the robot motion is slightly audible. The participant
is not expecting the first approach. For the following five
approaches, the participant is aware of the robot motion. Part
two serves as training and habituation to the robot and consists
of hands-on training in groups of three persons. It starts with
an introduction to the Franka Emika Desk programming
interface and the robot followed by a hands-on programming
of a pick and place task. After a short break, the group is
split up again and the participants are individually asked

to sit down in front of the tablet to complete another quiz.
The previous process of robot approach is repeated for every
participant.

C. Social-signal analysis for involuntary motion

The experiment requires a reliable evaluation whether the
human movement can be classified as IM. Based on the
assumption that IM can be measured by social cues of startle
and surprise (S-S) as suggested in [32], we conduct a multi-
modal video analysis (facial displays, gaze, gestures/postures),
in which S-S reactions are recorded and labelled. Even though
computational approaches for the automatic recognition
of social signals keep on progressing, manual annotation
procedures currently are better suited to identify and interpret
situated expressions in practical collaboration tasks at first
hand [33]. In this article, we use a context-sensitive approach
where the expert person evaluates the social signals (human
coder) as an interpretation filter, who decides whether a given
cue is defined as a social signal of S-S based on theoretical
assumptions and sample training. Both inductive sample
training and deductive theoretical assumptions informed by
already existing knowledge about S-S cues form the basis of
our codebook. To achieve a high degree of validity with the
maximum possible generalisability of the video analysis, we
let two human coders evaluate the video files independently
based on a codebook consisting of deductive and inductive
codes. The first and main coder is male, has sociological
background, and experience in social cue coding. To ensure
that his bias is as small as possible, the coder is brought in
later to the study, knowing only the general set-up but not the
purpose of the study. He is asked to prepare a codebook and
to evaluate the videos concerning the frequency and strength
of S-S expressions. The second coder is female, mechanical
engineer, and has no previous experience in social cue coding.
She knows the goal of the experiment and is involved in the
programming and set-up. After the first coding the main coder
is informed about the study design and the hypotheses. To
ensure high reliability concerning individuality and temporal
consistency of the annotation, inter- and intra-coder reliability
checks are carried out as follows:

• The inter-coder reliability is ensured by using two coders
with different levels of experience. Both coders analyse
all videos of the experiments and apply the same coding
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TABLE III
CODING SCHEME AND RESPECTIVE REFERENCES FOR SOCIAL CUES ON

STARTLE AND SURPRISE

Facial display Gestures/Postures

Startle
(reflex)

- rapid eyeblinks [RE] [35]
- lowered eyebrows [LE] [39]
- closed eyes [CE] [39]
- tightened eyelids [TE] [39]
- horizontally stretched
lips [HSL] [39]
- tightened neck [TN] [39]
- delayed felt smile
(relief) [DFS]

- evasive head
movements [EHM] [36]
- evasive trunk
movements [ETM] [21]
- shoulder jerks [SJ]
- body twitches [BT]
- body freezes [BF] [21]

Surprise
(emotion)

- raised eyebrows [REB] [39]
- widened eyes [WE] [39]
- raised upper
eyelids [RUE] [39]
- open jaws [OJ] plus relaxed
lips [RL] [39]

- evasive head
movements [EHM] [36]
- evasive trunk
movements [ETM] [21]
- body freezes [BF] [21]

instrument. Then, their level of agreement is determined
independently.

• The intra-coder reliability is ensured by repetition
of the analysis two months later by the main coder
and generating the Cohens Kappa score among the
annotations [34].

The interpretation of the manual cue coding indicating S-S
is guided by the scheme listed in Tab. III. Cues were derived
from existing literature [21] and [35]-[36] and an additional
expression was identified during sampling training (two videos
with a duration of 13 min 53 s in total), which were observed
in humans the following unexpected robot movements: felt
smiles [20] that appeared to be relief reactions following
the immediate S-S responses. For the non-verbal behaviour
annotation, we use a simplified version of the MUMIN
multimodal coding scheme proposed in [37] and adapt it
by including gaze and body postures from human users and
removing parts referring to human-human interaction. The
ELAN annotation tool [38] is used to classify the video files.
As a first step, the coder watches the entire video clip of
one participant running through all experimental conditions.
Then, the baseline postures, gestures, and facial displays
including gaze are annotated at the beginning of the sequence.
Subsequently, only the following changes in the expressive
behaviour of human participants are annotated, that

• can be associated with movements of the robot arm by
registering basic feedback of contact perception (CP =
1) and

• which indicate that the human is startled and/or surprised
by these movements.

Possible cues for CP = 1 include gaze changes towards
the robot, which might also be delayed, and interruptions of
the human’s task, indicated e.g. by freezing hand gestures. If
no S-S cue appeared, the IMO was rated as not present.

V. SAFE HUMAN-AWARE MOTION GENERATION

In this section, we present results on the coder reliability
for the social signal analysis, the IMO for different robot
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approach motion trials, and identification of the first risk
matrix for IMO. The risk matrix is then used to implement
the EMU, which is cascaded with the SMU that ensures
physical safety.

A. Reliability of the social signal coding

In order to check the reliability of the social signal coding
regarding individuality and time-consistency, we calculate the
inter- and intra-coder reliability as explained in Sec. IV-C.
The reliability of the evaluation in terms of the Cohens-Kappa
score (κ) [34] is as follows:
A) inter-coder reliability: κ = 0.805
B) intra-coder reliability: κ = 0.840

This can be considered as “almost perfect” according to [34].

B. Risk Matrix Identification

We obtain the risk matrix for IMO by calculating the
relative frequency of IMO within the experiment. For this
calculation, we exclude the first trial where the robot
approaches the participants, based on the exploratory result of
the number of S-S cues identified in the different trials which
is shown in Fig. 4. From the significantly higher number of
S-S cues on the first trial, we conclude that the participant
does not expect the first robot approach motion at all, but is
aware of the subsequent approaches.

The experimental results are assembled in a risk matrix,
which maps the human-robot distance and velocity to a
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SMU and EMU. The framework’s inputs are: nominal robot velocity vnom,
effective mass depending on the current robot pose m(qqq), instantaneous
human-robot distance dh, currently endangered body part, end-effector
curvature c, and human cognitive condition F .

probability of IMO; see Fig. 5. In the illustrated risk matrix,
the probability of IMO is listed for a) constant velocity
(0.25 m/s) and variable distance (horizontal entries) and
b), variable distance and variable robot velocity (diagonal
entries). It is notable that the IMO probability decreases at
dh = 0.10 m which most likely results from the low number
of participants. From the risk matrix, we can deduce an
expectation curve for a certain threshold qr in terms of IMO
probability. With this expectation curve, we can determine
the maximum robot velocity that can be commanded while
satisfying the IMO constraint. Two exemplary expectation
curves2 for qr = 0.3 and 0.15 are illustrated in Fig. 5.

C. EMU Implementation and Validation

In this section, we describe the implementation of the
Expectable Motion Unit (EMU) and the validation of the
concept. The EMU is cascaded with the Safe Motion Unit
[13]. The motion generator is implemented using the Franka
Emika Control Interface and the manufacturer’s joint velocity
controller. For the practical realization of the EMU, we select
a linear safety curve for the IMO threshold qr = 15 %. Using
this safety curve, the instantaneous human-robot distance dh is
mapped to the safe velocity vEMU; see Fig. 5. This is done for
robot-human distances of less than 30 cm. The velocity limit
provided by the EMU is then forwarded to the SMU, which
checks whether the desired speed also satisfies the physical
safety constraint. The SMU maps the current configuration-
dependent robot reflected mas m(q) to a biomechanically safe
velocity vSMU via a curvature-related human injury threshold
called safety curve; see Fig. 7. For the instantaneous robot-
human distance dh ≤ dmax, the commaned robot velocity is
the smallest of the three speeds vd, vEMU, and vEMU. For
distances > dmax, the desired velocity is only limited by the
SMU.

vsafe =

{
min{vd, vSMU, vEMU}, dh ≤ dmax

min{vd, vSMU}, dh > dmax

. (1)

2In this paper, the expectation curves are linear for the sake of simplicity.
It is possible that they have other shapes.
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vdesv
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Fig. 7. Measured velocity of the robot following the afe human-aware
velocity scaling for the experimental validation compared to the velocity
profile using the maximum define task velocity if no human was in the
workspace.

TABLE IV
RELATIVE FREQUENCIES OF S-S CUES BASED ON ROBOT DISTANCE AND

VELOCITY EVALUATED BY EACH CODER WITHIN THE VALIDATION STUDY

dh [m] vr [m/s] f by C1 f by C2

0.25 0.405 0.05 0.00
0.20 0.33 0.05 0.00
0.15 0.255 0.00 0.05
0.10 0.18 0.13 0.13
0.05 0.105 0.19 0.14
0.00 0.03 0.25 0.5

To validate whether the EMU concept reduces IMO in
practice, we repeat the experimental procedure proposed in
Sec. IV-B using the EMU velocity shaping. The experimental
setup and and velocity profiles are depicted in Fig. 7. The
desired, nominal velocity profile is shown in blue, the velocity
that was shaped by the combination of EMU and SMU in
green. A group of eleven participants is part of the validation
experiment with an average age of 28± 4.4 years including
six males (54, 5 %) and five females (45, 5 %). We expect
the relative frequency of IMO observed in this experiment to
be less or equal to the desired threshold of qr = 0.15.

The inter-coder reliability for the validation experiment is
κ = 0.65, which can be considered as “substantial” according
to [34]. The low inter-coder reliability compared to the
previous experiment may be a result of less strong S-S cues
(which are difficult to identify) and the lower number of
participants. Due to the lower inter-coder reliability, both
coders’ results are used to verify the EMU. Thus, Table IV
lists the relative frequency f of S-S cues rated by both the
first (C1) and second coder (C2). According to observations
of both coders, we conclude that in case of an approach to a
distance dh > 10 cm the relative frequency of S-S occurrence
is very low (0− 5 %). For robot-human distance up to dh <
10 cm the risk of IMO is 13 %. At 5 cm, 14 − 19 % IMO
is observed. The difference of 5 % of the relative frequency
between both coders indicates that the reaction was rated
differently in one case. In our preliminary validation we
observe that the desired 15 % threshold was satisfied for
robot-human distances > 5 cm. However, for dh ≥ 0 cm we
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observe 25− 50 % IMO.
To sum up, the EMU generated motions that resulted in the

desired reduction in IMO in five of six robot approaches. For
human-robot distances ≥ 10 cm, the robot velocity can even
be increased while ensuring the IMO constraint. However,
when approaching the most proximal point of the human
body, which was on the boundary of the human workspace
(∼ 4 cm from the human fingertips), the IMO was not reduced
sufficiently.

VI. DISCUSSION

In this paper, we demonstrated the overall approach in an
exemplary scenario. All experiments were conducted with a
Franka Emika Panda robot arm mounted stationary to a table
and under the previously introduced prerequisites in Sec. IV-
A. Thus, the results and can not be generalized. Other robot
types with e.g. varying size or topology, different scenarios,
and different human factors require additional exploratory
investigation. To complete the database, multiple experiments
are required to define human, robot, and environmental
variables influencing IMO and calibration of the safety curves.
Here, the importance of the parameter choice lays within the
contextual application desired for the EMU, as a full model
on human expectation is unfeasible and due changing human
state not desirable [10]. Once a set of risk matrices for IMO
is established, thresholds for IMO are required, which may
either be selected globally, e.g., according probability of the
human intruding the robot’s workspace or vice versa [40], or
dynamically depending on the human condition. For example,
one may select a rather low threshold qr when the user is
sleepy, and a higher threshold when the human observes the
robot task closely. Therefore, to deploy the EMU approach
in real application scenarios, we need to

1) identify and monitor the human condition using a
human profiler (eye-tracking can be used to determine
the human’s level of awareness, for example),

2) select the risk matrix based on a scenario and human
condition,

3) define the desired IMO probability threshold and the
respective expectation curve.

To fulfill human expectation context-dependent and indi-
vidualised may also require learning algorithms which can
be deployed on top of the general models. Once the robot
is capable of safe and expected motion also the human
comfort, trust, and acceptance towards a robot may be
improved. Finally, a combination of the EMU approach
and algorithms for physical human safety enables embedded
artificial intelligence that is considered safe and trustworthy.

VII. CONCLUSION

In this paper, we proposed and validated the Expectable
Motion Unit (EMU) concept, which aims at avoiding possibly
hazardous human involuntary motions (IM) in human-robot
interaction. We conducted experiments with 29 volunteers in
order to systematically analyse the relative frequency of IM
occurrence (IMO) depending on the robot speed and human-
robot distance in a typical HRI setting. The experimental

results are processed towards a risk matrix, from which
safety curves were deduced for a particular application. An
expectation curve which limits the probability of IMO to
15 % in the considered use case was embedded into the EMU
motion generator, which limits the robot velocity such that
the IM threshold is not exceeded. Furthermore, the EMU
was combined with the well-established Safe Motion Unit
that ensures physical safety during contact. In a validation
experiment, the EMU successfully prevented IM in five out
of six cases. Overall, by fulfilling the human expectation
towards the robot and taking the biomechanical safety limits
into account at the same time, our concept improves the
safety, the performance, and the trust of robot users in HRI.
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